Toll Modeling in Context of Regional Travel Demand Model

presented to

NC Model Users Group

October 24, 2007

Overview

- Toll Modeling in General
- Toll model application in NC Models
- TransCAD application

Tolls Influence

- Trip Distribution
 - Destination Choice
- Mode Choice
 - SOV, HOV or Toll Path
 - Alternative Competitive Mode
- Trip Assignment
 - Alternative Path Finding

Cost Factor in Path Finding

- Highway operating cost
- Transit Fare
- Vehicle Occupancy >1
- Toll Cost

 Socio-Economic Characteristics of trip makers in combination with travel costs

Trip Purpose

- Time of Day
 - AM and PM Peak
 - Off Peak
- Method of Toll Collection
 - Cash
 - Electronic Toll Collection
- Vehicle Type

Car, Trucks

Vehicle Occupancy

SOV, HOV

Trip length for toll users

Toll Models

- Mode Choice
- Highway Assignment
 - Route Choice Sub-Model
- Highway Assignment
 - Equivalent Time Penalties

Assignment Toll Models

Generalized assignment procedure

uses travel time and costs by time of day

Feedback loop through mode choice

- uses successive averaging of travel times

Path-Finding

If no toll, then 1, 2, 3 is best path

With toll on 2-3, must convert \$ and time to equivalent units

Best path might now be 1-4-6-3

- 4-step model
 - Survey for Trip Generation, Distribution
 - Borrowed Mode Choice
- Developed, calibrated without tolls

Used BPR as VDF

$$t = t_f \left[1 + \alpha \left(\frac{v}{c} \right)^{\beta} \right]$$

⇒How to incorporate toll without recalibration?

Use generalized cost VDF

$$c_i(x) = (k_i)(\delta)L_i + \varphi \cdot t_f \left[1 + \alpha \left(\frac{v}{c}\right)^{\beta}\right]$$

- k: fixed cost \Rightarrow toll
- $-\delta$: operating cost (per mi) \Rightarrow 0
- φ : value of time \Rightarrow ??
 - → Use locally determined value

MMA

 With MMA (more advanced) toll functionality built-in

BUT

- Must make sure VOT was correctly calibrated at outset
- Be aware of different cost function:

$$gc_{OD}^{m} = \sum_{i \in A_{OD}^{m}} \left\{ VOT^{m} \cdot VDF \left(t_{a}, c_{a}, \sum_{m} PCE_{m} x_{a}, \cdots \right) + FT_{a}^{m} \right\} + \sum_{m \in M_{OD}^{m}} MT_{m}^{i}$$

Hypothetical Toll for TRM

